Recombination estimation under complex evolutionary models with the coalescent composite-likelihood method.

نویسندگان

  • Antonio Carvajal-Rodríguez
  • Keith A Crandall
  • David Posada
چکیده

The composite-likelihood estimator (CLE) of the population recombination rate considers only sites with exactly two alleles under a finite-sites mutation model (McVean, G. A. T., P. Awadalla, and P. Fearnhead. 2002. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231-1241). While in such a model the identity of alleles is not considered, the CLE has been shown to be robust to minor misspecification of the underlying mutational model. However, there are many situations where the putative mutation and demographic history can be quite complex. One good example is rapidly evolving pathogens, like HIV-1. First we evaluated the performance of the CLE and the likelihood permutation test (LPT) under more complex, realistic models, including a general time reversible (GTR) substitution model, rate heterogeneity among sites (Gamma), positive selection, population growth, population structure, and noncontemporaneous sampling. Second, we relaxed some of the assumptions of the CLE allowing for a four-allele, GTR + Gamma model in an attempt to use the data more efficiently. Through simulations and the analysis of real data, we concluded that the CLE is robust to severe misspecifications of the substitution model, but underestimates the recombination rate in the presence of exponential growth, population mixture, selection, or noncontemporaneous sampling. In such cases, the use of more complex models slightly increases performance in some occasions, especially in the case of the LPT. Thus, our results provide for a more robust application of the estimation of recombination rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Likelihood Inference of Complex Population Histories and Recombination from Multiple Genomes

The wealth of information contained in genome-scale datasets has substantially encouraged the development of methods inferring population histories with unprecedented resolution. Methods based on the Site Frequency Spectrum (SFS) are computationally efficient but discard information about linkage disequilibrium, while methods making use of linkage and recombination are computationally more inte...

متن کامل

A coalescent-based method for detecting and estimating recombination from gene sequences.

Determining the amount of recombination in the genealogical history of a sample of genes is important to both evolutionary biology and medical population genetics. However, recurrent mutation can produce patterns of genetic diversity similar to those generated by recombination and can bias estimates of the population recombination rate. Hudson 2001 has suggested an approximate-likelihood method...

متن کامل

Consistency of estimators of population scaled parameters using composite likelihood.

Composite likelihood methods have become very popular for the analysis of large-scale genomic data sets because of the computational intractability of the basic coalescent process and its generalizations: It is virtually impossible to calculate the likelihood of an observed data set spanning a large chromosomal region without using approximate or heuristic methods. Composite likelihood methods ...

متن کامل

A composite-likelihood approach for detecting directional selection from DNA sequence data.

We present a novel composite-likelihood-ratio test (CLRT) for detecting genes and genomic regions that are subject to recurrent natural selection (either positive or negative). The method uses the likelihood functions of Hartl et al. (1994) for inference in a Wright-Fisher genic selection model and corrects for nonindependence among sites by application of coalescent simulations with recombinat...

متن کامل

Accurate Computation of Likelihoods in the Coalescent with Recombination Via Parsimony

Understanding the variation of recombination rates across a given genome is crucial for disease gene mapping and for detecting signatures of selection, to name just a couple of applications. A widely-used method of estimating recombination rates is the maximum likelihood approach, and the problem of accurately computing likelihoods in the coalescent with recombination has received much attentio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2006